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Neuberger’s double-pass algorithm
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We analyze Neuberger’s double-pass algorithm for the matrix-vector multiplicationR(H)•Y @whereR(H) is
(n21,n)th degree rational polynomial of positive definite operatorH], and show that the number of floating-
point operations is independent of the degreen, provided that the number of sites is much larger than the
number of iterations in the conjugate gradient. This implies that the matrix-vector product (H)21/2Y
.R(n21,n)(H)•Y can be approximated to very high precision with sufficiently largen, without noticeably extra
costs. Further, we show that there exists a thresholdnT such that the double-pass is faster than the single pass
for n.nT , wherenT.12–25 for most platforms.
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I. INTRODUCTION

In 1998, Neuberger proposed the nested conjugate gr
ent @1# for solving the propagator of the overlap-Dirac o
erator@2#

D5m0S 11g5

Hw

AHw
2 D , ~1!

with the sign function sgn(Hw)[Hw(Hw
2 )21/2 approximated

by the polar approximation

S~Hw!5
Hw

n (
l 51

n
bl

Hw
2 1dl

[HwR(n21,n)~Hw
2 !, ~2!

whereHw5g5Dw , Dw is the standard Wilson-Dirac operato
plus a negative parameter2m0 (0,m0,2), and the coef-
ficientsbl anddl are

bl5sec2F p

2n S l 2
1

2D G , dl5tan2F p

2n S l 2
1

2D G .
In principle, any column vector ofD215D†(DD†)21 can

be obtained by solving the system

DD†Y5m0
2@21g5S~Hw!1S~Hw!g5#Y5I ~3!

with conjugate gradient, provided that the matrix-vec
productS(Hw)Y can be carried out. Writing

S~Hw!Y5
Hw

n (
l 51

n

blZ
( l ), ~4!

one can obtain$Z( l )% by solving the system

~Hw
2 1dl !Z

( l )5Y ~5!

with multishift conjugate gradient~CG! @3,4#. In other
words, each~outer! CG iteration in Eq.~3! contains a com-
plete ~inner! CG loop ~5!, i.e., nested conjugate gradient.

Evidently, the overhead for the nested conjugate grad
is the execution time for the inner conjugate gradient lo
~5! as well as the memory space it requires, i.e., (2n13)
1063-651X/2003/68~6!/066704~9!/$20.00 68 0667
di-

r

nt
p

large vectors, each of 12Nsite double complex numbers
whereNsite is the number of sites, and 1253 ~color! 3 4
~Dirac! is the degree of freedom at each site for QCD. T
memory storage becomes prohibitive for large lattices si
n is often required to be larger than 16 in order to achiev
reliable approximation for the sign function. To minimize th
memory storage for$P( l ),Z( l )%, Neuberger@5# observed that
one only needs the linear combination( l 51

n blZ
( l ) rather than

eachZ( l ) individually. SinceZi
( l ) and its conjugate vectorPi

( l )

at thei th iteration of the inner CG are linear combinations
their precedents$Pj

( l ) ,Zj
( l ) , j 50, . . . ,i 21% in the iteration

process, it is possible to obtain their updating coefficie
$a i

( l ) ,b i
( l )% in the first pass, and then use them to update

sum ( l 51
n blZ

( l ) successively in the second pass, w
memory storage of only five vectors, independent of the
green of the rational polynomialR(n21,n).

At first sight, the double-pass algorithm seems to
slower than the single-pass algorithm. However, in the
run @with SU~2! gauge field on the 83 lattice#, Neuberger
found that the double-pass actually ran faster by 30% t
the single pass, and remarked that the speedup most li
reflects the cache usage in the testing platform, the S
O2000 ~with four processors, each with 4 MB cach
memory!.

In this paper, we analyze the number of floating-po
operations (F2) for the double-pass algorithm, and show th
it is independent of the degreen of R(n21,n), provided that
the number of lattice sites (Nsite) is much larger than the
number of iterations (Li) of the CG loop. The last condition
is amply satisfied even for a small lattice~e.g., Nsite583

324512 288), sinceLi is usually less than 1000~after the
low-lying eigenmodes ofHw

2 are projected out!. On the other
hand, the number of floating-point operations (F1) for the
single pass is a linearly increasing function ofn. It follows
that there exists a thresholdnF such thatF2<F1 for n
>nF , where the value ofnF depends on the implementatio
of the algorithms (nF.59 for our codes!. Corresponding to
the number of floating-point operations, we also obtain
formulas for the CPU times (T1 andT2) for the single- and
the double-pass algorithms. Further, we show that there
ists a thresholdnT such that the double-pass is faster than
©2003 The American Physical Society04-1
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single pass1 for n.nT , where nT.12–25 ~for most plat-
forms!, which is quite smaller than the thresholdnF.59 for
the number of floating-point operations. By timing the spe
of each subroutine, we can account for the extra slow do
in the single-pass algorithm, which is unlikely to be elim
nated, due to the memory bandwidth, a generic weaknes
any computational system. Thus, in general~for most vector
or superscalar machines!, one may find that the double-pas
is faster than the single pass, forn.nT.12–25. This ex-
plains why in Neuberger’s test run, even atn532, the
double-pass is already faster than the single pass by 30%
fact, we find that DEC alpha XP1000 and IBM SP2 SM
also have 30% speedup atn532 ~see Table IV!, which
agrees with the theoretical estimate~32! using the CPU time
formulas~27! and ~28!.

Nevertheless, the most interesting result is that the sp
of the double-pass algorithm is almost independent of
degree n. This implies that the matrix-vector produc
(Hw

2 )21/2Y.R(n21,n)(Hw
2 )Y can be approximated to ver

high precision with sufficiently largen, without noticeably
extra costs.

The outline of this paper is as follows. In Sec. II, w
outline the single- and double-pass algorithms for the ite
tion of the~inner! CG loop ~5!, and analyze their major dif
ferences. In Sec. III, we estimate the number of~double pre-
cision! floating-point operations as well as the CPU time
the single- and double-pass algorithms, respectively,
show that there exists a thresholdnT such that the double
pass is faster than the single pass forn.nT . In Sec. IV, we
perform some tests. In Sec. V, we conclude with some
marks.

II. THE SINGLE- AND THE DOUBLE-PASS ALGORITHMS

In the section, we outline the single- and the double-p
algorithms for the inner CG loop~5!, and point out their
major differences.

For the single-pass algorithm, with the input vectorY, we
initialize the vector variables$Z( l ),P( l )%,R,A,B and the sca-
lar variablesa,b,$g ( l )% as

Z0
( l )50, P0

( l )5Y, l 51, . . . ,n,

R05Y,

a2151,

b050,

g21
( l ) 5g0

( l )51, l 51, . . . ,n.

Then we iterate (j 50,1, . . . ) according to

Aj5HwPj
(1) , ~6!

1In this paper, we only consider the~faster! single-pass algorithm
in which the vectorsP( l ) and Z( l ) ( l 52, . . . ,n) are not updated
after Z( l ) converges.
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Bj5HwAj1d1Pj
(1)5~Hw

2 1d1!Pj
(1) , ~7!

a j5
^Rj uRj&

^Pj
(1)uBj&

, ~8!

Rj 115Rj2a jBj , ~9!

b j 115
^Rj 11uRj 11&

^Rj uRj&
, ~10!

Pj 11
(1) 5Rj 111b j 11Pj

(1) , ~11!

Zj 11
(1) 5Zj

(1)1a j Pj
(1) , ~12!

together with the following updates forl 52, . . . ,n:

g j 11
( l ) 5

g j
( l )g j 21

( l ) a j 21

a jb j~g j 21
( l ) 2g j

( l )!1g j 21
( l ) a j 21@11a j~dl2d1!#

,

~13!

Pj 11
( l ) 5g j 11

( l ) Rj 111b j 11S g j 11
( l )

g j
( l ) D 2

Pj
( l ) , ~14!

Zj 11
( l ) 5Zj

( l )1a j

g j 11
( l )

g j
( l )

Pj
( l ) . ~15!

The loop terminates at the i th iteration if
A^Ri 11uRi 11&/^YuY& is less than the tolerance~tol!.

Since we are only interested in the linear combinat
( l 51

n blZi 11
( l ) , in which eachZi 11

( l ) can be expressed in term
of $Rj , j 50, . . . ,i %, we can write

(
l 51

n

blZi 11
( l ) 5(

j 50

i

cjRj , ~16!

wherecj can be derived as@5#

cj5 (
m50

i 2 j Fa j 1mdmS b11(
l 52

n

bl

gm1 j 11
( l ) gm1 j

( l )

g j
( l ) D G , ~17!

with

dm5H )
k51

m

b j 1k for m.0

1 for m50.

~18!

Therefore, the right hand side~rhs! of Eq. ~16! can be evalu-
ated with the CG loop~6!–~11!, requiring only the storage o
five large vectors (A,B,R,P(1),T5(cjRj ), provided that the
coefficients$cj , j 50, . . . ,i % are known. However, from Eq
~17!, the determination ofcj at any j th iteration requires
some values of$a%, $b%, and $g% which can only be ob-
tained in later iterations. Thus we have to run the first pa
i.e., the CG loop~6!–~11!, to obtain all coefficients of$a%
and$b%, up to the convergence pointi, and then compute al
$cj , j 50, . . . ,i % according to Eqs.~17! and~13!. Finally, we
4-2
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TABLE I. The average CPU time~in units of nanosecond! per floating-point operation~FPO! for four
different kinds of matrix-vector operations in the single- and double-pass algorithms. The CPU is Pen
~2.53 GHz!, with 1 Gbyte Rambus~PC800 or PC1066!.

CPU time~ns! per FPO
PC800 PC1066

Operation No. of FPO SSE2on SSE2off SSE2on SSE2off

~a! uA&5c1uA&1c2uB& 72Nsite 3.720 3.721 2.977 3.016
~b! uV&5uA&1cuB& 48Nsite 5.521 5.522 4.330 4.429
~c! a5^VuV& 36Nsite 4.249 4.251 3.312 3.340
~d! uA&5HwuB& 1644Nsite 0.764 1.535 0.686 1.440
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run the second pass, i.e., going through Eqs.~6!, ~7!, ~9!, and
~11!, and addingcjRj to the rhs of Eq.~16!, successively
from j 50 to the convergence pointi.

Evidently, all operations in Eqs.~6!–~12!, ~14!, and ~15!
are proportional to the number of lattice sites,Nsite , times
the number of iterations,Li . On the other hand, the compu
tations of the coefficients$g% @Eq. ~13!# and$cj% @Eq. ~17!#
do not depend onNsite , but only onLi ~up to a small term
proportional toLi

3). Thus, forNsite@Li , we can neglect the
computation of$cj% @Eq. ~17!#, and focus on the major dif
ference between the single pass and the double-pass, na
the number of operations in Eqs.~14! and ~15!, which is
proportional to (n21)NsiteLi , versus the number of opera
tions in Eqs.~6!, ~7!, ~9!, and~11! plus the vector update in
the rhs of Eq.~16!, which is proportional toNsiteLi . Obvi-
ously, the number of floating-point operations in the sin
pass is a linearly increasing function ofn, while that of the
double-pass is independent ofn, thus it follows that the
double-pass must be faster than the single pass for s
ciently largen.

In the following section, we estimate the number
floating-point operations as well as the CPU time, for t
single pass, and the double-pass respectively. Even tho
our countings are based on our codes, they serve to illus
the general features of the single- and the double-pass a
rithms, which are valid for any software implementatio
and/or machines.

III. THE CPU TIME AND THE NUMBER OF FLOATING-
POINT OPERATIONS

For our codes, the number of floating-point operations
the single pass is

F15NsiteLi@35521120~n21!p#

1Nsite~288nev148n11776!, ~19!

while for the double-pass it is

F256888NsiteLi1Nsite~288nev21656!1FLi
3

6
1Li

2~2n21!

1Li S 13n2
73

6 D27n17Gq, ~20!
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where Nsite is the number of sites of the lattice,Li is the
number of iterations of the CG loop,nev is the number of
projected eigenmodes ofHw

2 , and n is the degree of the
rational polynomialR(n21,n). In the single pass, Eq.~19!,
(n21)p is the effective number of the (n21) updates in
Eqs.~14! and ~15!, sinceP( l ) andZ( l ) are not updated afte
Z( l ) converges. The value ofp depends on the convergenc
criteria as well as the rational polynomialR(n21,n) and its
argument. Similarly, in the double-pass, the sum in Eq.~17!
only includes the terms which have not yet converged at
iteration j, and the reduction in the number of floating-poi
operations can be taken into account by the factorq in Eq.
~20!. ~The value ofq is about 0.95 for convergence up t
zero in the IEEE double precision representation.!

Taking into account different speeds of various floatin
point operations, we estimate the CPU time for the sin
pass and the double-pass as follows:

T15NsiteLi@192tb172tc13288td1~48tb172ta!~n21!p#

1Nsite~288nevte148ntb124ta1108tc11644td!,

~21!

T25NsiteLi~240tb172tc16576td!1Nsite~288nevte124ta

2144tb1108tc21644td!1qFLi
3

6
1Li

2~2n21!

1Li S 13n2
73

6 D27n17G t f , ~22!

where ta ,tb ,tc , and td denote the average CPU time p
floating-point operation~FPO! for the four different kinds of
vector operations~a!–~d! listed in Table I, respectively,te the
average CPU time per FPO for constructing the complem
tary vector from the projected eigenmodes ofHw

2 , andt f the
time for computing the coefficients~17! in the double-pass
Note that settingta5tb5tc5td5te5t f51 in Eqs.~21! and
~22! reproduces Eqs.~19! and ~20!, respectively.

It should be emphasized that the numerical values of
constants and coefficients in Eqs.~19!–~22! may vary
slightly from one implementation to another, however, t
number of different terms and their functional dependen
4-3



an

rh
o
of
he
-

o

st

on
e
s

f

le

l
lg
s

n-

ngle

e.,

f

he
ons

2

T.-W. CHIU AND T.-H. HSIEH PHYSICAL REVIEW E68, 066704 ~2003!
on the variables (Nsite , Li , n, nev , p, q, ta ,tb ,tc ,td ,te , and
t f) should be the same for any codes of the single-
double-pass algorithms.

For the double-pass, it is clear that the first term in the
of Eq. ~20! is the most significant part, since the number
lattice sites (Nsite) is usually much larger than the number
iterations (Li) of the CG loop such that the second and t
third terms in the rhs of Eq.~20! can be neglected. For ex
ample, Nsite583324, Li51000, n516, nev532, and q
50.95, then the first term is 6888NsiteLi.8.531010, while
the sum of the second and the third terms only gives;2.8
3108. Thus we can single out the most significant part
F2,

F2.6888NsiteLi , ~23!

which comes from the first pass, Eqs.~6!–~11!, and the sec-
ond pass, Eqs.~6!, ~7!, ~9!, and~11!, plus the vector update
in the rhs of Eq.~16!. Similarly, for the single pass, the mo
significant part ofF1 is the first term in the rhs of Eq.~19!,

F1.NsiteLi@35521120~n21!p#, ~24!

which comes from the operations in Eqs.~6!–~12!, ~14! and
~15!.

Evidently, from Eqs.~24! and ~23!, F1 is a linearly in-
creasing function ofn while F2 is independent ofn. Thus it
follows that there exists a thresholdnF such thatF2,F1 for
n.nF . From Eqs.~24! and ~23!, we obtain the threshold
nF ,

nF511
139

5p
, ~25!

where the value ofp depends on the convergence criteri
for removing$P( l ),Z( l )% from the updating list, as well as th
rational polynomialR(n21,n) and its argument. For our code
and the tests in the following section,p.0.48, thus we have

nF.59. ~26!

AssumingNsite@Li , we obtain the most significant parts o
the CPU times~21! and ~22! as

T1.NsiteLi@192tb172tc13288td1~48tb172ta!~n21!p#,
~27!

T2.NsiteLi~240tb172tc16576td!. ~28!

Obviously, from Eqs.~27! and ~28!, there exists a threshold

nT511
2tb1137td

~2tb13ta!p
~29!

such thatT2,T1 ~the double-pass is faster than the sing
pass! for n.nT .

Even though the countings in Eqs.~21! and~22! are based
on our codes~for R(n21,n) with argumentHw

2 ), the essential
features of Eqs.~21! and ~22! should be common to al
implementations of the single- and the double-pass a
rithms. In other words, the numerical coefficients in Eq
06670
d

s
f

f

o-
.

~27! and ~28! may change from one implementation to a
other, however, the existence of a thresholdnT must hold for
any implementation.

Now it is interesting to comparenT with nF . From Eqs.
~25! and ~29!, one immediately sees thatnT,nF if

19td,11ta17tb ~30!

is satisfied.2

In practice, it turns out thatta /td.2 and tb /td.3 for
most systems~Tables I and II!. Thus,nT.12–25, which is
quite smaller thannF.59.

The speedup of the double-pass with respect to the si
pass~for n.nT) can be defined as

S5
T12T2

T2
~31!

which is estimated to be

S.
~3ta12tb!p

10tb13tc1274td
~n2nT!, ~32!

where Eqs.~27!–~29! have been used.
In Table I, we list our measurements ofta ,tb ,tc , and td

for four different hardware configurations of Pentium 4, i.
two different Rambuses of faster/slower~PC1066/PC800!
speed, and with/withoutSSE2 ~the vector processing unit o
Pentium 4! codes.

Substituting the values ofta , tb , and td into ~29!, we
obtain the theoretical estimates for the thresholdnT ,

nT.5
12, Pentium 4, PC800, withSSE2

22, Pentium 4, PC800

13, Pentium 4, PC1066, withSSE2

25, Pentium 4, PC1066,

~33!

wherep.0.48 has been used.
Note that for each hardware configuration in Table I, t

average CPU time per FPO of the simple vector operati
~a!–~c! is much longer than that of~d!, Wilson matrix times

2Note that the inequality~30! is more restrictive than 685td

,417ta1268tb .

TABLE II. Similar to Table I, except for the platforms IBM SP
SMP ~Power 3 at 375 MHz! with 4 Gbyte memory and DEC alpha
XP1000~21264A at 667 MHz! with 1.5 Gbyte memory.

CPU time~ns! per FPO
Operation No. of FPO IBM DEC

~a! uA&5c1uA&1c2uB& 72Nsite 5.269 7.232
~b! uV&5uA&1cuB& 48Nsite 10.98 12.91
~c! a5^VuV& 36Nsite 6.209 7.684
~d! uA&5HwuB& 1644Nsite 2.379 3.054
4-4
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NEUBERGER’s DOUBLE-PASS ALGORITHM PHYSICAL REVIEW E68, 066704 ~2003!
vector. A simplified explanation3 is as follows. Since all these
four vector operations involve long vectors, the CPU and
cache cannot hold all data at once. Thus it is necessar
transfer the data from/to the memory successively, ev
time the CPU completes its operations on a portion of
vectors. However, for any system, the memory bandwidt
limited. Thus, there is a time interval between consecu
sets of data transferring to/from the CPU. Therefore, if
CPU finishes a computation before the next set of dat
ready, then it would waste its cycles in idling. Since any o
of the vector operations~a!–~c! is rather simple, the CPU
finishes a computation at a speed faster than that of tran
ring data from/to the memory, thus the CPU ends up was
a significant fraction of time in idling. On the other hand, f
the vector operation~d!, the number of FPO is much mor
than that of any one of~a!–~c!, thus when the CPU com
pletes its operations on a portion of the vectors, the next
of data might have been ready, so the CPU does not w
much time in the memory I/O. This explains why the avera
CPU time per FPO of~a!–~c! is much longer than that of~d!.
Further, this simple picture also explains why turning
SSE2of Pentium 4~see Table I! doubles the speed of~d! but
has no speedups for~a!–~c!, since the bottleneck of~a!–~c! is
essentially due to the memory bandwidth rather than
speed of the CPU.

If the memory bandwidth is the major cause for the in
ficiency of the simple vector operations~a!–~c!, then using
faster memories would increase the speeds of~a!–~c! more
significantly than that of~d!. From Table I, we can compar
the speedups of these four vector operations as the~slower!
PC800 is replaced with~faster! PC1066. We find that the
speedup for~a!–~c! is 27%, but that for~d! is only 11%.
Thus the speedups are consistent with above picture.

Obviously, the inefficiency of vector operations~a!–~c!
should exist in any platform, not only for the Pentium
systems. To check this, we measureta ,tb ,tc , andtd for IBM
SP2 SMP~Power 3 at 375 MHz! and DEC alpha XP1000
~21264A at 667 MHz!, respectively. The results are listed
Table II, which give

nT.H 21, DEC alpha XP1000

20, IBM SP2 SMP.
~34!

Although it is impossible to go through all platforms an
measure the values ofta , tb , and td individually, it is ex-
pected thatta /td.1 and tb /td.1 @such that the inequality
~30! is amply satisfied# is a common feature of most system
In other words, we expect that the double-pass is faster
the single pass forn.nT.12–25, at least for most plat
forms.

Recall that in Neuberger’s test run with SGI O2000,
n532, the double-pass is faster than the single pass by 3
@5#. This is not a surprise at all, in view of similar speedu
of other systems atn532. For example, for IBM SP2 SMP

3It should be emphasized that the mechanism of the interact
between the CPU and the RAM is a rather complicated proc
which is beyond the scope of this paper.
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or DEC alpha XP1000, substituting the values ofta , tb , tc ,
and td ~from Table II! into Eq. ~32!, we find thatS5T1 /T2
21.30% atn532, which also agrees with the actual me
surements given in the following section~see Table IV!.
Thus, the speedupS of the double-pass forn.nT with nT
quite smaller thannF is a generic feature of any platform
stemming from the fact that the vector operations in the s
ond pass is more efficient than those, Eqs.~14! and ~15!, in
the single pass~i.e., ta.td and tb.td).

Nevertheless, the salient feature of Eqs.~23! and ~28! is
that the number of floating-point operations and the C
time for the double-pass are almost independent ofn. Thus
one can choosen as large as one wishes, with only a neg
gible overhead. For example, for the 163332 lattice, with
Li51000, nev520, andq50.95, the increment ofT2 from
n516 ton5200 is less than 0.05%. In other words, one c
approximate (Hw

2 )21/2Y ~i.e., preserve the chiral symmetry!
to any precision as ones wishes, without noticeably ex
costs. This is the virtue of Neuberger’s double-pass al
rithm, which may have been overlooked in the last fi
years.

IV. TESTS

In this section, we perform several tests on the single-
the double-pass algorithms, and compare the theore
thresholdsnT , Eq.~29!, andnF , Eq.~25!, with the measured
values.

In Table III, we list the number of floating-point opera
tions and the CPU time for computing one column of t
inverse of

D~mq!5mq1~m02mq/2!@11g5S~Hw!#,

i.e., D21(mq)5D(mq)†Y, whereY is solved from

D~mq!D†~mq!Y5$mq
21~m0

22mq
2/4!

3@21~g561!S~Hw!#%Y5I ~35!

with multimass~outer! conjugate gradient for a set of 16 ba
quark masses (0.02<mq<0.3), while the inner CG~5! is
iterated with the single pass, and the double-pass res
tively. The tests are performed on the 83324 lattice with
SU~3! gauge configuration generated by the Wilson gau
action atb55.8. Other parameters arem051.30, nev532
~the number of projected eigenmodes!, lmax/lmin
56.207/0.198~after projection!, and the tolerances for th
outer and inner CG loops are 1.0310211 and 2.0310212,
respectively. The total number of iterations,Lo , for the outer
CG loop is around 100–103, while the average number
iterations for the inner CG loop is;287.

With the formulas~19!–~22!, we can estimate the numbe
of floating-point operations and the CPU time for computi
one column ofD21(mq) for a numbernq of bare quark
masses. For the number of floating-point operations, our
sults are

Gk5~Lo1nq!Fk1Nsite~60Lonq184Lo166nq!

116Lonq213Lo118nq12, ~36!

ns
s,
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TABLE III. The number of floating-point operations and the CPU time~in units of second! for Pentium
4 ~2.53 GHz! with 1 Gbyte Rambus~PC1066! to compute one column ofD21(mq) for 16 quark masses
versus the degreen of the rational polynomialR(n21,n) in polar approximation~2!.

Double pass Single pass
No. of FPO CPU time~s! No. of FPO CPU time~s! s

n G2 V2 Measured G1 V1 Measured Polar

12 2.9031012 2456 2451 1.6831012 2342 2241 631025

13 2.9031012 2456 2452 1.7131012 2429 2372 331025

14 2.9031012 2456 2454 1.7531012 2515 2520 131025

16 2.9031012 2456 2454 1.8131012 2689 2714 331026

32 2.9031012 2458 2456 2.2531012 4097 4089 3310211

34 2.9031012 2458 2458 2.3031012 4273 4278 7310212

40 2.9031012 2458 2456 2.4531012 4803 4819 1310213

56 2.9031012 2460 2460 2.8631012 6218 6261 2310214

59 2.9031012 2460 2460 2.9331012 6483 6491 2310214

60 2.9031012 2460 2461 2.9631012 6572 6604 2310214

64 2.9031012 2460 2461 3.0631012 6926 6965 2310214
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whereLo is the number of iterations of the outer CG loo
~35!, the subscriptk51 ~2! stands for the single~double!
pass. Obviously, the most significant part ofGk is the first
term in the rhs of Eq.~36!, thus

Gk.~Lo1nq!Fk , k51,2. ~37!

Similarly, the most significant part of the CPU time is

Vk.~Lo1nq!Tk , k51,2 ~38!

whereT1 andT2 are given in Eqs.~21! and ~22!.
In Table III, the estimated CPU timesV1 and V2 are in

good agreement with the measured CPU times~the deviation
is always less than 5%!. By comparing the CPU times for th
single pass and the double-pass, we see that the double
becomes faster than the single pass atn.13, in agreement
with the theoretical estimate~33! for p50.48, wherep is
obtained by measuring the effective number of the (n21)
vector pairs$P( l ),Z( l ),l 52, . . . ,n% which are updated befor
Z( l ) converges.

Further, comparingG2 and G1, we see thatG1.G2 at
nF.59, in agreement with the theoretical estimate~26! for
p50.48.
06670
ass

Also, in Table III, the remarkable feature of the doubl
pass algorithm is demonstrated: the number of floating p
operations (G2) and the CPU time are almost independent
n. Thusn can be increased to 64 or any higher value su
that the chiral symmetry is preserved to any precision as
wishes. The chiral symmetry breaking or the error of t
rational approximationR(n21,n) due to a finiten can be mea-
sured by

s5max
Y
UW†W

Y†Y
21U , W5S~Hw!Y, ~39!

which is shown in the last column of Table III.
To check the theoretical estimates for the thresholdnT in

Eq. ~34!, we repeat the tests of Table III for Pentium
~PC800!, IBM SP2 SMP, and DEC alpha XP1000, respe
tively. The results are listed in Table IV. Obviously, in ea
case, the double-pass is faster than the single pass fn
.20–22, in good agreement with the theoretical estimate
Eq. ~34!. Further, atn532, the speed of the double-pass
faster than the single pass by 25%, 31%, and 31% for th
three platforms, respectively, compatible with what Ne
berger found in his test run with SGI O2000@5#. Note that
ute

pass
TABLE IV. The CPU time~in units of second! for the single- and the double-pass algorithms to comp
one column ofD21(mq) for 16 quark masses versus the degreen of the rational polynomialR(n21,n) in polar
approximation~2!.

n P4 PC800 IBM SP2 SMP DEC alpha XP1000
Double pass Single pass Double pass Single pass Double pass Single

20 4922 4627 7701 7674 9921 9868
21 4930 4794 7711 7881 9924 10197
22 4918 4940 7710 8090 9931 10531
24 4921 5166 7705 8529 9929 11125
26 4920 5433 7710 8990 9929 11599
32 4918 6167 7718 10138 9926 13043
4-6
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TABLE V. The number of floating-point operations and the CPU time~in units of second! for Pentium 4
~2.53 GHz! with one Gbyte Rambus~PC1066! to compute 1 column ofD21(mq) for 16 quark masses versu
the degreen of the Zolotarev rational polynomialRZ

(n21,n) .

Double pass Single pass
No. of FPO CPU time~s! No. of FPO CPU time~s! s

n G2 V2 Measured G1 V1 Measured Zolotarev

12 2.9031012 2456 2450 1.7231012 2309 2274 7310211

13 2.9031012 2456 2452 1.7531012 2398 2404 8310212

14 2.9031012 2456 2455 1.7831012 2485 2463 1310212

16 2.9031012 2456 2455 1.8331012 2659 2638 3310214

32 2.9031012 2458 2458 2.2531012 4058 4068 3310214

34 2.9031012 2458 2458 2.3031012 4233 4245 3310214

40 2.9031012 2458 2460 2.4531012 4759 4795 3310214

56 2.9031012 2460 2462 2.8631012 6159 6180 3310214

59 2.9031012 2460 2462 2.9231012 6423 6459 3310214

60 2.9031012 2460 2460 2.9531012 6510 6544 3310214

64 2.9031012 2460 2462 3.0531012 6860 6903 3310214
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for Pentium 4, usingSSE2code increases the speedup of t
double-pass to 66% atn532 ~see Table III!, thus making the
double-pass algorithm even more favorable for P4 cluste

At this point, it may be interesting to repeat the tests
Table III, but replacing the polar approximation~2! with the
Zolotarev optimal rational approximation,

Sopt~Hw!5hw(
l 51

n bl8

hw
2 1c2l 218

[HwRZ
(n21,n)~Hw

2 !,

hw5Hw /lmin , ~40!

where

RZ
(n21,n)~Hw

2 !5
d08

lmin

)
l 51

n21

~11hw
2 /c2l8 !

)
l 51

n

~11hw
2 /c2l 218 !

5
1

lmin
(
l 51

n bl8

hw
2 1c2l 218

, ~41!

and the coefficientsd08 , bl8 andcl8 are expressed in terms o
Jacobian elliptic functions@6–8# with arguments dependin
only on n andlmax

2 /lmin
2 (lmax andlmin are the maximum

and the minimum of the eigenvalues ofuHwu). The results
are listed in Table V.

Comparing Table III with Table V, it is clear that for th
single pass withn,32, Zolotarev optimal approximation i
better than the polar approximation, in terms of the precis
of the approximation (s). However, for the double-pass, th
polar approximation seems to be as good as the Zolot
approximation since the degreen can be pushed to a ver
large value, with negligible extra CPU time. In other word
with the double-pass algorithm, it does not matter which
06670
.
f

n

ev

,
-

tional approximation one uses to computeD21(mq) min a
gauge background. This seems to be a rather unexpe
result.

V. CONCLUDING REMARKS

So far, we have restricted our discussions to the sign fu
tion with argumentHw . However, it is clear that the salien
features of the double-pass algorithm are invariant for ot
choices of the argument, e.g., improved Wilson operator
general, the double-pass algorithm is a powerful scheme
the matrix-vector productR(H2)•Y, where R can be any
rational polynomialR with argumentH2 ~positive definite
Hermitian operator!, not just for (H2)21/2.

The virtue of Neuberger’s double-pass algorithm is
constancy in speed and memory storage for any degreen of
the rational approximation, where its constancy in speed
valid under a mild condition (Nsite@Li) which can be ful-
filled in most cases. Further, the double-pass is faster t
the single pass even forn as small as 12~Pentium 4!, and it
is expected that the thresholdnT.12–25 for most systems
Thus, it seems that there is not much room left for the sing
pass algorithm with Zolotarev approximation, unless t
number of inner CG iterations is exceptionally large, whi
could happen if the low-lying eigenmodes ofHw

2 are not
projected out and treated exactly.

Note thatHw
2 can be tridiagonalized by the conjugate gr

dient ~6!–~11!, with the unitary transformation matrixU
formed by the normalized residue vectors$R̂j , j 50, . . . ,i %,
and the elements of the tridiagonal matrix expressed in te
of the coefficients$a j ,b j , j 50, . . . ,i % @9# ~up to the toler-
ance of the conjugate gradient!, i.e.,

U†Hw
2 U.T, ~42!

where
4-7
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TABLE VI. The number of floating-point operations and the CPU time~in units of second! for Pentium
4 ~2.53 GHz! with 1 Gbyte Rambus~PC1066! to compute one column ofD21(mq) versus different algo-
rithms.

Double-pass algorithm Lanczos~CG! algorithm
Polar (n5128) Zolotarev (n516) Lanczos CG

FPO 9.4931013 9.4931013 9.5431013 9.5131013

Time ~total! 94543 94632 97824 94722
Time ~second pass! 46281 46303 46353 46174
s 1310214 1310214 1310214 1310214
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Uk j5
~Rj !k

A^Rj uRj&
, ~43!

and T is a symmetric tridiagonal matrix with nonzero el
ments,

Tj j 5
b j

a j 21
1

1

a j
, ~44!

Tj 11,j5Tj , j 1152
Ab j 11

a j
, j 50, . . . ,i . ~45!

Thus, after running the first pass of the CG loop~6!–~11!, T
can be constructed from the coefficients$a j ,b j%, and diago-
nalized by an orthogonal transformation

T5OLÕ. ~46!

Then the matrix-vector product (Hw
2 )21/2Y can be evaluated

as

1

AHw
2

Y.UO
1

AL
ÕU†Y5(

j 50

i

l jRj , ~47!

where

l j5 (
m50

i

Ojm

1

Alm

O0mA^R0uR0&

^Rj uRj&
. ~48!

Here the summation in the rhs of Eq.~47! is obtained by
running the second pass of the CG loop$Eqs.~6!,~7!,~9!, and
~11!%, and addingl jRj to the sum successively fromj 50 to
i.

It is well known that~any positive definite Hermitian ma
trix! Hw

2 can be tridiagonalized by Lanczos iteration@9,10# as
well as the conjugate gradient. The connection between
Lanczos iteration and the conjugate gradient for the tridia
nalization of a positive definite Hermitian matrix has be
well established@9#, and both have almost the same perf
mance in practice. In Ref.@11#, the Lanczos approach wa
proposed for the matrix-vector product (Hw

2 )21/2Y, and its
variant ~replacing Lanczos iteration with the conjugate g
dient! was used in Ref.@12#.

The only difference between the Lanczos~CG! algorithm
and Neuberger’s double-pass algorithm is the diagonaliza
of the tridiagonal matrixT and the computation of the coe
06670
he
-

-

-

n

ficients $ l j%, Eq. ~48!, in the former versus the computatio
of the coefficients$cj%, Eq. ~17!, in the latter. Since the
number of floating-point operations for the diagonalizati
of a symmetric tridiagonal matrixT is .3Li

3 ~whereLi is the
number of iterations of the inner CG loop, or the size ofT),
it is compatible with that of computing the coefficients$cj%,
i.e., the last term on the rhs of Eq.~20!. Thus we expect tha
the performance~speed and accuracy! of Lanczos~CG! al-
gorithm and Neuberger’s double-pass algorithm are com
ible.

In Table VI, we compare the Lanczos~CG! algorithm
with Neuberger’s double-pass algorithm, by computing o
column ofD21(mq) ~for 16 bare quark masses! on the 163

332 lattice with SU~3! gauge configuration generated by th
Wilson gauge action atb56.0. Other parameters arem0
51.30, nev520 ~the number of projected eigenmodes!,
lmax/lmin56.260/0.215~after projection!, and the toler-
ances for the outer and inner CG~Lanczos! loops are 1.0
310211 and 2.0310212, respectively. The number of itera
tions for the outer CG loop isLo5347, while the average
number of iterations for the inner CG loop is;300. Evi-
dently, these seemingly different algorithms have almost
same speed as well as accuracy (s).

Thus, for quenched lattice QCD, one has several com
ible options to compute the quenched quark propagator,

~Dc1mq!215~12rmq!21@D21~mq!2r #, r 5
1

2m0
,

~49!

even though we have chosen Neuberger’s double-pass a
rithm to solve D21(mq) in our recent investigation@13#.
Nevertheless, for lattice QCD with dynamical quarks, t
quark determinant detD(mq) could not be computed directly
with existing algorithms and computers. If detD(mq) is in-
corporated through the dynamics of 2n pseudofermion fields
~where n can be regarded as the degreen in the rational
polynomial R(n21,n)), then an additional degree of freedo
~or the fifth dimension withNs52n sites! has to be intro-
duced. Thus a relevant question is how to reprodu
detD(mq) accurately with the minimalNs . A solution has
been presented in Ref.@14#. On the other hand, it would be
interesting to see whether there is an algorithm to drive
dynamics of theseNs pseudofermion fields such that the co
is almost independent ofNs52n.
4-8
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