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We analyze Neuberger’s double-pass algorithm for
(n—1,n)th degree rational polynomial of positive defi

the matrix-vector multiplida{idn - Y [whereR(H) is
nite operatdr and show that the number of floating-

point operations is independent of the degreerovided that the number of sites is much larger than the
number of iterations in the conjugate gradient. This implies that the matrix-vector pro#i)ct*fy
=R (H).Y can be approximated to very high precision with sufficiently larg&ithout noticeably extra
costs. Further, we show that there exists a threshelsuch that the double-pass is faster than the single pass

for n>n;, wheren;=12-25 for most platforms.
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I. INTRODUCTION

large vectors, each of Ng;,, double complex numbers,
where Ng;;e is the number of sites, and #3 (color) X 4

In 1998, Neuberger proposed the nested conjugate gradibirac) is the degree of freedom at each site for QCD. The

ent[1] for solving the propagator of the overlap-Dirac op-
erator[2]

D:mo

Hw
1+ 75\/?), (1)

with the sign function sgi,,)=H,,(H2) " approximated
by the polar approximation

_ W — (n—1,n) /142
S(Hw = §H+d. H RTIV(HD), ()

whereH,,= ysD,,, D, is the standard Wilson-Dirac operator
plus a negative parameterm, (0<my<2), and the coef-
ficientsb, andd, are

T | 1

2n\' 2]
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In principle, any column vector @ '=D"(DD") ! can
be obtained by solving the system

=sed|— , d,=tarf

DDTY=m3[2+ y5S(Hy) + S(Hy) ys]Y=1 (3

with conjugate gradient, provided that the matrix-vector.

productS(H,,)Y can be carried out. Writing

n

HY= 2 3 5,20, @)

n i=1

one can obtaifZ("} by solving the system
(Ha+dpzW=y (5)

with multishift conjugate gradien{CG) [3,4]. In other
words, eachoutep CG iteration in Eq.(3) contains a com-
plete(innen CG loop(5), i.e., nested conjugate gradient.

memory storage becomes prohibitive for large lattices since
n is often required to be larger than 16 in order to achieve a
reliable approximation for the sign function. To minimize the
memory storage fofP("),Z(0}, Neubergef5] observed that
one only needs the linear combinatiBfi_,b,Z(") rather than
eachz(" individually. Sincez{" and its conjugate vectd?("

at theith iteration of the inner CG are linear combinations of
their precedent¢P{",z(" j=0,...j—1} in the iteration
process, it is possible to obtain their updating coefficients
{aM BD} in the first pass, and then use them to update the
sum 3 .bZ" successively in the second pass, with
memory storage of only five vectors, independent of the de-
green of the rational polynomiaR(" =",

At first sight, the double-pass algorithm seems to be
slower than the single-pass algorithm. However, in the test
run [with SU(2) gauge field on the Blattice], Neuberger
found that the double-pass actually ran faster by 30% than
the single pass, and remarked that the speedup most likely
reflects the cache usage in the testing platform, the SGI
02000 (with four processors, each with 4 MB cache
memory).

In this paper, we analyze the number of floating-point
operations ) for the double-pass algorithm, and show that
it is independent of the degreeof R, provided that
the number of lattice sitesN;;e) is much larger than the
number of iterationsl(;) of the CG loop. The last condition
is amply satisfied even for a small latti¢e.g., Ngj;e=8°>
X 24=12288), sincd.; is usually less than 100@&fter the
low-lying eigenmodes oIf-va are projected ouit On the other
hand, the number of floating-point operatioris,) for the
single pass is a linearly increasing functionroflt follows
that there exists a threshold: such thatF,<F; for n
=ng, where the value ofi depends on the implementation
of the algorithms §=59 for our codes Corresponding to
the number of floating-point operations, we also obtain the

Evidently, the overhead for the nested conjugate gradierformulas for the CPU timesT(; andT,) for the single- and
is the execution time for the inner conjugate gradient loopthe double-pass algorithms. Further, we show that there ex-

(5) as well as the memory space it requires, i.en<{3)
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ists a thresholah; such that the double-pass is faster than the
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single passfor n>n;, wheren;=12-25 (for most plat- Bj=HyA;+d;P{V=(HZ+d) PV, 7
forms), which is quite smaller than the threshald=59 for

the number of floating-point operations. By timing the speed _ (RiIR})

of each subroutine, we can account for the extra slow down ai_<P(1)|B_> ! 8)
in the single-pass algorithm, which is unlikely to be elimi- I

nated, due to the memory bandwidth, a generic weakness of R.;=R —aB;, (9)
any computational system. Thus, in gendfat most vector ! e

or superscalar machineone may find that the double-pass (Ry+1|Rj+1)

is faster than the single pass, for-ny=12-25. This ex- Bj+1:W1 (10
plains why in Neuberger’s test run, even 32, the 1

double-pass is already faster than the single pass by 30%. In P R + 8 p(1) (11)
fact, we find that DEC alpha XP1000 and IBM SP2 SMP R

also have 30% speedup at=32 (see Table 1V, which 7 =74 4. pd) (12)
agrees with the theoretical estim#82) using the CPU time JHL T e

formulas(27) and (28). together with the following updates for=2, ... n:

Nevertheless, the most interesting result is that the speed
of the double-pass algorithm is almost independent of the y(')y('_)la._l
degree n. This implies that the matrix-vector product ) = L :

g P P LR M0y 0 a1’
(H2)"Y2y=R(""1M(H2)Y can be approximated to very @iBi(yi21= v ) T ytaaj-al 1+ e(di—dy) ]
high precision with sufficiently larg@, without noticeably (13
extra costs. ’)/(I) 2

The outline of this paper is as follows. In Sec. Il, we m .0 p. I BRARE S ()
outline the single- and double-pass algorithms for the itera- Pi Y'HRHPL’BJH( 7 ) P a4
tion of the(innern CG loop(5), and analyze their major dif-
ferences. In Sec. lll, we estimate the numbe(dwuble pre- 7(|+)1
cision) floating-point operations as well as the CPU time for z0 =70+ q ﬁP}'). (15)
the single- and double-pass algorithms, respectively, and Vi
show that there exists a threshaig such that the double- The loop terminates at the ith iteration if

pass is faster than the single passriorn;. In Sec. IV, we

perform some tests. In Sec. V, we conclude with some re
marks.

Il. THE SINGLE- AND THE DOUBLE-PASS ALGORITHMS

In the section, we outline the single- and the double-pass
algorithms for the inner CG loog5), and point out their
major differences.

For the single-pass algorithm, with the input vectpmwe
initialize the vector variable§z(’,P(},R,A,B and the sca-
lar variablesa, 8,{y")} as

23)201 pg):Y, I=1,...n, "
- with
a_=1,

Bo=0,
Y =9y0=1 I1=1,...n

Of {R] ,j=0, -

wherec; can be derived a5]

. 7Er|1)+j+1757|1)+j
@ mdn| byt 2, b=
=2 b%
]
m
. for m>0
5m: kljl :81+k
1 for m=0.

WRi 1R+ 1)/{Y]Y) is less than the tolerandeol).
Since we are only interested in the linear combination
N .b,z"., in which eachz{!), can be expressed in terms
.1}, we can write

(16)

J o

(18

Therefore, the right hand sidehs) of Eq. (16) can be evalu-

ated with the CG loo6)—(11), requiring only the storage of

Then we iterate (=0,1, . . .)according to

five large vectors4,B,R,PY), T=X¢|R;), provided that the

coefficients{c;,j=0, ... i} are known. However, from Eq.

Aj=H,P", (6)

(17), the determination ot; at any jth iteration requires

some values ofa}, {8}, and{vy} which can only be ob-
tained in later iterations. Thus we have to run the first pass,

YIn this paper, we only consider tlifaste single-pass algorithm
in which the vectorsP®) and z) (I=2, ... n) are not updated
afterZ() converges.

066704-2

i.e., the CG loop(6)—(11), to obtain all coefficients of a}
and{g}, up to the convergence pointand then compute all
1¢;,j=0, ...} according to Eqs17) and(13). Finally, we
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TABLE I. The average CPU timén units of nanosecondper floating-point operatiofFPO for four
different kinds of matrix-vector operations in the single- and double-pass algorithms. The CPU is Pentium 4
(2.53 GH32, with 1 Gbyte Rambug$PC800 or PC1066

CPU time(ns) per FPO

PC800 PC1066
Operation No. of FPO SSE20N sse2off SSE20N sse2off
(@ |AY=c,|A)+c,|B) 72Ngite 3.720 3.721 2.977 3.016
(b) [V)=]A)+c|B) 48Nt 5.521 5.522 4.330 4.429
(0 a=(V|V) 36Ngite 4.249 4.251 3.312 3.340
(d) |AY=H,|B) 164MN;4e 0.764 1.535 0.686 1.440

run the second pass, i.e., going through Ef5k.(7), (9), and  where N, is the number of sites of the latticg; is the

(11), and addingc;R; to the rhs of Eq.(16), successively number of iterations of the CG loop,, is the number of

from j=0 to the convergence poit projected eigenmodes dfi2,, and n is the degree of the
Evidently, all operations in Eq$6)—(12), (14), and(15)  rational polynomialR™~1". In the single pass, Eq19),

are proportional to the number of lattice sité;ie, times  (n—1)p is the effective number of then-1) updates in

the number of iterationd,; . On the other hand, the compu- Egs.(14) and(15), sinceP") andz{") are not updated after

tations of the coefficientsy} [Eq. (13)] and{c;} [Eq.(17)]  z() converges. The value qf depends on the convergence

do not depend oM, but only onL; (up to a small term  criteria as well as the rational polynomiB"~1" and its

proportional toLf’). Thus, forNg;e>L;, we can neglect the argument. Similarly, in the double-pass, the sum in @)

computation of{¢;} [Eq. (17)], and focus on the major dif- only includes the terms which have not yet converged at the

ference between the single pass and the double-pass, namétgrationj, and the reduction in the number of floating-point

the number of operations in Eq&l4) and (15), which is  operations can be taken into account by the fagtar Eq.

proportional to —1)Ng;;cL;, versus the number of opera- (20). (The value ofq is about 0.95 for convergence up to

tions in Egs.(6), (7), (9), and(11) plus the vector update in zero in the IEEE double precision representagion.

the rhs of Eq.(16), which is proportional td\s;;cL;. Obvi- Taking into account different speeds of various floating-

ously, the number of floating-point operations in the singlepoint operations, we estimate the CPU time for the single

pass is a linearly increasing function of while that of the  pass and the double-pass as follows:

double-pass is independent of thus it follows that the

double-pass must be faster than the single pass for suffi-

ciently largen. T1=Ngjieli[192,+ 72t .+ 32884+ (48, + 72t,)(n—1)p]

In the following section, we estimate the number of
. . ; ’ . + Ngio( 2880, t+48nt,+ 24t ,+108& .+ 1644 ),
floating-point operations as well as the CPU time, for the sitel e b a ¢ o)

single pass, and the double-pass respectively. Even though (21)
our countings are based on our codes, they serve to illustrate

the general features of the single- and the double-pass algo-
rithms, which are valid for any software implementations T2=Nsiteli(240p + 72+ 6576 ) + Nsjre( 288, te+ 24t,

and/or machines. 3

L:
~ 144+ 108~ 1644¢) +q| 5 +LF(2n—1)

Ill. THE CPU TIME AND THE NUMBER OF FLOATING-

POINT OPERATIONS
+L; 6 ts, (22

73
13n— —) —-7n+7
For our codes, the number of floating-point operations for
the single pass is

wheret,,t,,t;, andty denote the average CPU time per
F1=Nsiel [ 3552+ 120n—1)p] floating-point operatiorfFPO) for the four different kinds of
+ Ngjro( 2880, + 480+ 1776, (19) vector operatio_nsa)—(d) listed in Table I, re_spectivelyze the
average CPU time per FPO for constructing the complemen-
tary vector from the projected eigenmodesl—ﬁ, andt; the
time for computing the coefficientd 7) in the double-pass.
Note that setting,=t,=t.=ty=t.=t;=1 in Egs.(21) and
(22) reproduces Eqg19) and(20), respectively.

It should be emphasized that the numerical values of the
constants and coefficients in Eg§19—(22) may vary
slightly from one implementation to another, however, the
number of different terms and their functional dependences

while for the double-pass it is

3

L:
F,=688&N,el; + Ngire( 288N, — 1656) + 3' +L2(2n—1)

a, (20

73
+Li(l3n—€)—7n+7
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on the variablesNgjie, Li, N Ngy, P, G ot tc,tg,te, and TABLE Il. Similar to Table I, except for the platforms IBM SP2
MP (Power 3 at 375 MHewith 4 Gbyte memory and DEC alpha

t;) should be the same for any codes of the single- an P1000(21264A at 667 MHz with 1.5 Gbyte memory.

double-pass algorithms.
For the double-pass, it is clear that the first term in the rhs
of Eq. (20) is the most significant part, since the number of

CPU time(ns) per FPO

lattice sites Ng;ie) is usually much larger than the number of Operation No. of FPO 'BM DEC

iterations (;) of the CG loop such that the second and thea |A)=c,|A)+c,|B) 72Ngite 5.269 7.232

third terms in the rhs of Eq20) can be neglected. For ex- (b)  |V)=|A)+c|B) 48N ;e 10.98 12.091

ample, Ngje=8%x 24, L;=1000, n=16, n,, =32, andq (¢ a=(V|V) 36N,ite 6.209 7.684

=0.95, then the first term is 68B8;,.L;=8.5x 10'°, while (d) |AY=H,|B) 164Ny e 2.379 3.054

the sum of the second and the third terms only givex8

X 10%. Thus we can single out the most significant part of

Fo, (27) and (28) may change from one implementation to an-

other, however, the existence of a threshojdnust hold for

F2=688&Ns;tel; , (23 any implementation.

Now it is interesting to compare; with ng. From Egs.

which comes from the first pass, Eq6)—(11), and the sec- (25) and (29), one immediately sees thag<ng. if

ond pass, Eq96), (7), (9), and(11), plus the vector update
in the rhs of Eq(16). Similarly, for the single pass, the most

significant part ofF, is the first term in the rhs of Eq19), 1911ty + 7t (30

F1=Ngiieli[ 3552+ 120 n—1)p], (24) s satisfied?

In practice, it turns out that,/ty>2 andty,/ty>3 for
which comes from the operations in E46)—(12), (14) and  most systemgTables | and Il. Thus,ny=12-25, which is
(15). quite smaller thamg=59.

Evidently, from Eqgs.(24) and (23), F, is a linearly in- The speedup of the double-pass with respect to the single
creasing function oh while F, is independent oh. Thus it  pass(for n>n¢) can be defined as
follows that there exists a threshatd such that~,<F, for

n>ng. From Egs.(24) and (23), we obtain the threshold T,—T>,
Ne S= T— (31)
! 2
Ne=1+ 139 (25)  Wwhich is estimated to be
F 5p '
+
where the value op depends on the convergence criterion ~ (3tat2tp)p n—n 32
1001 31,4 274, " (32
for removing{P"’,Z"} from the updating list, as well as the b Sle d

rational polynomiaR("~*" and its argument. For our codes

and the tests in the following sectiops=0.48, thus we have Where Eqs(27)—(29) have been used.
In Table I, we list our measurements @f.t,,t., andty

ng=59. (26)  for four different hardware configurations of Pentium 4, i.e.,
two different Rambuses of faster/slow&PC1066/PC800
AssumingNs;i>L;, we obtain the most significant parts of speed, and with/withousse2 (the vector processing unit of
the CPU times(21) and (22) as Pentium 4 codes.
Substituting the values dof,, t,, andty into (29), we

T1=Ngiteli[ 192+ 72+ 3288 4+ (48t + 726\)(”_1)(%]7’) obtain the theoretical estimates for the threshuojd

Ty=Ng;(cL; (240t + 724+ 6578). (28) 12, Pentium 4, PC800, witlsse
_ . 22, Pentium 4, PC800
Obviously, from Eqs(27) and(28), there exists a threshold ny= 13, Pentium 4, PC1066, witlsse (33
2ty + 137y 25, Pentium 4, PC1066,
Nt (29

@ rstp
wherep=0.48 has been used.

such thatT,<T, (the double-pass is faster than the single Note that for each hardware configuration in Table I, the

pas$ for n>ny. average CPU time per FPO of the simple vector operations
Even though the countings in E¢&1) and(22) are based (a)—(c) is much longer than that dfl), Wilson matrix times

on our codegfor R("~1M with argumentH?2), the essential

features of Eqs(21) and (22) should be common to all

implementations of the single- and the double-pass algo-?Note that the inequality(30) is more restrictive than 685

rithms. In other words, the numerical coefficients in Eqs.<417,+26&,.
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vector. A simplified explanatictis as follows. Since all these or DEC alpha XP1000, substituting the values pfty,, t.,

four vector operations involve long vectors, the CPU and itsandty (from Table 1) into Eq. (32), we find thatS=T,/T,
cache cannot hold all data at once. Thus it is necessary te 1=30% atn= 232, which also agrees with the actual mea-
transfer the data from/to the memory successively, evergurements given in the following sectidisee Table V.
time the CPU completes its operations on a portion of theThus, the speedup of the double-pass fon>n; with n;
vectors. However, for any system, the memory bandwidth igjuite smaller thamg is a generic feature of any platform,
limited. Thus, there is a time interval between consecutivestemming from the fact that the vector operations in the sec-
sets of data transferring to/from the CPU. Therefore, if theond pass is more efficient than those, Ed<) and(15), in
CPU finishes a computation before the next set of data ishe single pas§i.e.,t,>ty andt,>ty).

ready, then it would waste its cycles in idling. Since any one Nevertheless, the salient feature of E(3) and (28) is

of the vector operationga)—(c) is rather simple, the CPU that the number of floating-point operations and the CPU
finishes a computation at a speed faster than that of transfetime for the double-pass are almost independemnt. afhus
ring data from/to the memory, thus the CPU ends up wastingne can choosa as large as one wishes, with only a negli-
a significant fraction of time in idling. On the other hand, for gible overhead. For example, for the33632 lattice, with

the vector operatiorid), the number of FPO is much more L;=1000, n.,=20, andq=0.95, the increment of, from
than that of any one ofa)—(c), thus when the CPU com- n=16ton=200 is less than 0.05%. In other words, one can
pletes its operations on a portion of the vectors, the next Sefpproximate va)*lﬁy (i.e., preserve the chiral symmelry

of data might have been ready, so the CPU does not wastg any precision as ones wishes, without noticeably extra
much time in the memory I/O. This explains why the averagecosts. This is the virtue of Neuberger’s double-pass algo-

CPU time per FPO ofa)—(c) is much longer than that @fl).  rithm, which may have been overlooked in the last five
Further, this simple picture also explains why turning ONyears.

sse2of Pentium 4(see Table)l doubles the speed of) but

has no speedups féa)—(c), since the bottleneck @¢h)—(c) is V. TESTS
essentially due to the memory bandwidth rather than the
speed of the CPU. In this section, we perform several tests on the single- and

If the memory bandwidth is the major cause for the inef-the double-pass algorithms, and compare the theoretical
ficiency of the simple vector operatioiia)—(c), then using thresholds1;, Eq.(29), andng, Eq.(25), with the measured
faster memories would increase the speedgapf(c) more  values.
significantly than that ofd). From Table I, we can compare In Table Ill, we list the number of floating-point opera-
the speedups of these four vector operations agdlogven  tions and the CPU time for computing one column of the
PC800 is replaced witlifastey PC1066. We find that the inverse of
speedup for@)—(c) is 27%, but that for(d) is only 11%.

Thus the speedups are consistent with above picture. D(mg) =mg+(mMo—mg/2)[ 1+ ysS(Hu)],
Obviously, the inefficiency of vector operatiorig)—(c)

. _1 _ T .
should exist in any platform, not only for the Pentium 48 D *(mg)=D(mg) Y, whereYis solved from

systems. To check this, we meastyet, ,t., andty for IBM D(mg)DT(mg) Y ={mZ+ (m2—m?4)
SP2 SMP(Power 3 at 375 MHgand DEC alpha XP1000 a a a a
(21264A at 667 MHZ, respectively. The results are listed in X[2+(ys=1)S(Hy) 1} Y=1 (35

Table 1, which give ) ) ) )
with multimass(outen conjugate gradient for a set of 16 bare

21, DEC alpha XP1000 quark masses (0.82m;=<0.3), while the inner CQ5) is
= (39 iterated with the single pass, and the double-pass respec-
20, IBMSP2 SMP. tively. The tests are performed on thé>824 lattice with
SU(3) gauge configuration generated by the Wilson gauge
action at3=5.8. Other parameters amy=1.30, n,,=32

Nt

Although it is impossible to go through all platforms and
measure the values of, t,, andty individually, it is ex- : .
pected that,/ty;>1 andt,/ty>1 [such that the inequality (:th6e Zogyomlbgeg(aftcr)efr Egpejigfnemd an%gg]r]eﬂg?’;zggggl ;\on;“%he
(30) is amply satisfieflis a common feature of most systems. ‘ proj ’

; —11 — 12
In other words, we expect that the double-pass is faster tha?\mer a_nd inner CG loops are 1§C10 . and 2.0<10",
the single pass fon>n;~12-25, at least for most plat- respectlve_:ly. The total number of iterations,, for the outer
forms T ' CG loop is around 100-103, while the average number of

; ; : iterations for the inner CG loop is 287.
Recall that in Neuberger’s test run with SGI 02000, at : .
n= 32, the double-pass is faster than the single pass by 30%, W'th. the fo_rmulas(lQ)—(ZZ), we can estimate the numbgr
[5]. This is not a surprise at all, in view of similar speedupsOf floating-point operations and the CPU time for computing

-1
of other systems at=32. For example, for IBM SP2 SMP one column ofD™%(m,) for a ngmber_nq of bar_e quark
' masses. For the number of floating-point operations, our re-

sults are

3t should be emphasized that the mechanism of the interactions Gi=(Lo+Ng)Fi+ Nijte( 60L oN g+ 84L o+ 66n)
between the CPU and the RAM is a rather complicated process,
which is beyond the scope of this paper. +16L,ny—13L,+18ny+ 2, (36)
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TABLE lll. The number of floating-point operations and the CPU tifimeunits of secongfor Pentium
4 (2.53 GH2 with 1 Gbyte RambugPC1066 to compute one column db’l(mq) for 16 quark masses
versus the degree of the rational polynomiaR"~*" in polar approximatior(2).

Double pass Single pass
No. of FPO CPU timds) No. of FPO CPU timds) o
n G, V, Measured G, V, Measured Polar
12 2.90x 10%? 2456 2451 1.68 102 2342 2241 6<10°°
13 2.90x 10%? 2456 2452 1.7x 10% 2429 2372 x10°°
14 2.90x 10%? 2456 2454 1.7%10% 2515 2520 x10°°
16 2.90x 10%? 2456 2454 1.8x 10 2689 2714 X106
32 2.90x 10%? 2458 2456 2.25%10% 4097 4089 X104
34 2.90x 10%? 2458 2458 2.38010% 4273 4278 K10 12
40 2.90x 10%? 2458 2456 2.4% 10 4803 4819 K108
56 2.90< 10%? 2460 2460 2.86810% 6218 6261 x10 14
59 2.90< 10%? 2460 2460 2.93 10" 6483 6491 x10 14
60 2.90< 10%? 2460 2461 2.98 10" 6572 6604 X104
64 2.90< 10%? 2460 2461 3.0810% 6926 6965 X101

wherel, is the number of iterations of the outer CG loop  Also, in Table IIl, the remarkable feature of the double-
(35), the subscripk=1 (2) stands for the singlédouble pass algorithm is demonstrated: the number of floating point
pass. Obviously, the most significant part®f is the first  operations ,) and the CPU time are almost independent of

term in the rhs of Eq(36), thus n. Thusn can be increased to 64 or any higher value such
that the chiral symmetry is preserved to any precision as one
Gy=(LotngFy, k=12 (370  wishes. The chiral symmetry breaking or the error of the
rational approximatioR("~ " due to a finiten can be mea-
Similarly, the most significant part of the CPU time is sured by
Vi=(Lotng) Ty, k=12 (39 wHhw
o=ma>{T—1 , WZS(HW)Y, (39)
whereT,; and T, are given in Eqs(21) and (22). vy | Y'Y

In Table Ill, the estimated CPU timeg, andV, are in
good agreement with the measured CPU tiitties deviation  which is shown in the last column of Table III.
is always less than 5By comparing the CPU times for the To check the theoretical estimates for the thresimgldn
single pass and the double-pass, we see that the double-pass. (34), we repeat the tests of Table Il for Pentium 4
becomes faster than the single passatl3, in agreement (PC800, IBM SP2 SMP, and DEC alpha XP1000, respec-
with the theoretical estimaté33) for p=0.48, wherep is  tively. The results are listed in Table V. Obviously, in each
obtained by measuring the effective number of the-() case, the double-pass is faster than the single pass for
vector paird P",zM =2, ... n} which are updated before >20-22, in good agreement with the theoretical estimates in
Z" converges. Eq. (34). Further, am=32, the speed of the double-pass is
Further, comparindgs, and G;, we see thaG;=G, at faster than the single pass by 25%, 31%), and 31% for these
ne=>59, in agreement with the theoretical estiméé) for  three platforms, respectively, compatible with what Neu-
p=0.48. berger found in his test run with SGI 02008]. Note that

TABLE IV. The CPU time(in units of secongfor the single- and the double-pass algorithms to compute
one column oD’l(mq) for 16 quark masses versus the degres the rational polynomiaR("~*™ in polar

approximation(2).
n P4 PC800 IBM SP2 SMP DEC alpha XP1000
Double pass Single pass Double pass Single pass Double pass Single pass

20 4922 4627 7701 7674 9921 9868

21 4930 4794 7711 7881 9924 10197

22 4918 4940 7710 8090 9931 10531

24 4921 5166 7705 8529 9929 11125

26 4920 5433 7710 8990 9929 11599

32 4918 6167 7718 10138 9926 13043
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TABLE V. The number of floating-point operations and the CPU tilineunits of secongfor Pentium 4
(2.53 GH2 with one Gbyte RambudC1066 to compute 1 column df)’l(mq) for 16 quark masses versus
the degreen of the Zolotarev rational polynomieR(Z”‘l’”).

Double pass Single pass
No. of FPO CPU timés) No. of FPO CPU timés) o
n G, Vs, Measured Gy Vy Measured Zolotarev
12 2.90x 102 2456 2450 1.7210% 2309 2274 x10
13 2.90x 102 2456 2452 1.7%10% 2398 2404 & 10 12
14 2.90x 102 2456 2455 1.78 10% 2485 2463 K10 %2
16 2.90x 102 2456 2455 1.8 10% 2659 2638 x10 ¥
32 2.90< 102 2458 2458 2.2% 10" 4058 4068 x10
34 2.90x 102 2458 2458 2.3810%? 4233 4245 X104
40 2.90x 102 2458 2460 2.4% 10%? 4759 4795 X104
56 2.90< 102 2460 2462 2.88 10" 6159 6180 x10 %
59 2.90< 102 2460 2462 2.9% 10" 6423 6459 Xx10 %
60 2.90x 102 2460 2460 2.9% 10 6510 6544 x10™ ¥
64 2.90x 102 2460 2462 3.0% 102 6860 6903 x10

for Pentium 4, usingse2code increases the speedup of thetional approximation one uses to compllDél(mq) min a
double-pass to 66% at=32 (see Table I}, thus making the gauge background. This seems to be a rather unexpected
double-pass algorithm even more favorable for P4 clustersresult.

At this point, it may be interesting to repeat the tests of
Table I, but replacing the polar approximati¢®) with the
Zolotarev optimal rational approximation, V. CONCLUDING REMARKS

So far, we have restricted our discussions to the sign func-
tion with argument,,. However, it is clear that the salient
features of the double-pass algorithm are invariant for other
choices of the argument, e.g., improved Wilson operator. In
general, the double-pass algorithm is a powerful scheme for

n ’
E I _
S H,)=h —=H R(n 1n) H2 ,
opt( w) W hs\,"'cépl whz ( w)

hw=Huw/Nmin., 40 the matrix-vector producR(H?)-Y, whereR can be any
rational polynomialR with argumentH? (positive definite
where Hermitian operator not just for H2) %2,
. The virtue of Neuberger’'s double-pass algorithm is its

constancy in speed and memory storage for any degide

dr i (1+hg/ch) the rational approximation, where its constancy in speed is

ROIM(H2Z o valid under a mild condition Ng;e>L;) which can be ful-
Nmin T (1+n2/c; filled in most cases. Further, the double-pass is faster than

i=1 w2l =1 the single pass even foras small as 12Pentium 4, and it

is expected that the threshafg=12-25 for most systems.
1 & b/ Thus, it seems that there is not much room left for the single-
- Amin i1 h2+ch . (41) pass algorithm with Zolotarev approximation, unless the
21-1

number of inner CG iterations is exceptionally large, which
could happen if the low-lying eigenmodes blf\ZN are not
projected out and treated exactly.

Note thatH\fV can be tridiagonalized by the conjugate gra-
dient (6)—(11), with the unitary transformation matrixJ

formed by the normalized residue vecthfq J=0,...j},

) . o and the elements of the tridiagonal matrix expressed in terms
Comparing Table 1l with Table V, it is clear that for the of the coefficients{at; ,3;,j =0, . .. i} [9] (up to the toler-

single pass witm<32, Zolotarev optimal approximation is ance of the conjugate gradignie
better than the polar approximation, in terms of the precision jugate g nte.,
of the approximation ). However, for the double-pass, the
polar approximation seems to be as good as the Zolotarev UTvaUzT, (42)
approximation since the degreecan be pushed to a very

large value, with negligible extra CPU time. In other words,

with the double-pass algorithm, it does not matter which rawhere

and the coefficientd|, b/ andc/ are expressed in terms of
Jacobian elliptic functionf6—8] with arguments depending
only onn and\?_ /N2, (Amax @Nd\ i are the maximum
and the minimum of the eigenvalues #,,|). The results
are listed in Table V.
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TABLE VI. The number of floating-point operations and the CPU tifimleunits of secongfor Pentium
4 (2.53 GH2 with 1 Gbyte RambugPC1066 to compute one column dD’l(mq) versus different algo-

rithms.
Double-pass algorithm Lanczd€G) algorithm
Polar (h=128) Zolotarev i=16) Lanczos CG
FPO 9.4% 10" 9.49x 10" 9.54x 103 9.51x 10
Time (total) 94543 94632 97824 94722
Time (second pass 46281 46303 46353 46174
o 1x10° 1x10° % 1x10° % 1x10° 1

(Rjk
V(RIR)’

and 7 is a symmetric tridiagonal matrix with nonzero ele-
ments,

Ukj = (43)

i 1
LB s
1] ) .
a/]_]_ a]
VBj+1 . .
7]+1,j:7}yj+1:_ - ) ]:0,...,|. (45)

i

Thus, after running the first pass of the CG Ildép-(11), 7
can be constructed from the coefficiefits , 8;}, and diago-
nalized by an orthogonal transformation

T=0AO0. (46)

Then the matrix-vector producHZ) ~*/2Y can be evaluated
as

! Y=UO ! outy=> IR (47)
CH VA =
where
i
1 [{Ro|Ro)
li=> Oiy——=0 ~ = (48)
: mz:o M " VAR[R)

Here the summation in the rhs of E@l7) is obtained by
running the second pass of the CG Id&ms.(6),(7),(9), and
(11)}, and addingd ;R; to the sum successively froin=0 to
i

It is well known that(any positive definite Hermitian ma-
trix) Hf\, can be tridiagonalized by Lanczos iterati@10] as

ficients{l;}, Eq.(48), in the former versus the computation
of the coefficients{c;}, Eq. (17), in the latter. Since the
number of floating-point operations for the diagonalization
of a symmetric tridiagonal matriX'is :3Li3 (wherelL; is the
number of iterations of the inner CG loop, or the size7pf

it is compatible with that of computing the coefficieRts},

i.e., the last term on the rhs of E@Q0). Thus we expect that
the performancéspeed and accuracyf Lanczos(CG) al-
gorithm and Neuberger’s double-pass algorithm are compat-
ible.

In Table VI, we compare the Lanczd€G) algorithm
with Neuberger’s double-pass algorithm, by computing one
column of D~ *(m,) (for 16 bare quark massesn the 16
X 32 lattice with SW3) gauge configuration generated by the
Wilson gauge action a8=6.0. Other parameters ara,
=1.30, n,,=20 (the number of projected eigenmogles
Nmax/ Amin=6.260/0.215 (after projection, and the toler-
ances for the outer and inner CGanczo$ loops are 1.0
x 10 ! and 2.0< 10 *2 respectively. The number of itera-
tions for the outer CG loop it ,=347, while the average
number of iterations for the inner CG loop i8300. Evi-
dently, these seemingly different algorithms have almost the
same speed as well as accuraey.(

Thus, for quenched lattice QCD, one has several compat-
ible options to compute the quenched quark propagator,

(De+mg) = (1=rmg) (D~ (my)—r],
(49

even though we have chosen Neuberger’s double-pass algo-
rithm to solve D~*(mg) in our recent investigatiori13].
Nevertheless, for lattice QCD with dynamical quarks, the
quark determinant d&(m,) could not be computed directly

well as the conjugate gradient. The connection between theith existing algorithms and computers. If d&¢m,) is in-
Lanczos iteration and the conjugate gradient for the tridiagoeorporated through the dynamics af pseudofermion fields
nalization of a positive definite Hermitian matrix has been(where n can be regarded as the degmeeén the rational
well established9], and both have almost the same perfor-polynomial R"~1"), then an additional degree of freedom

mance in practice. In Refll], the Lanczos approach was
proposed for the matrix-vector produdt-li)*l’zY, and its

(or the fifth dimension withNg=2n siteg has to be intro-
duced. Thus a relevant question is how to reproduce

variant (replacing Lanczos iteration with the conjugate gra-detD(m,) accurately with the minimaNg. A solution has

dient was used in Refl12].
The only difference between the LancZz@G) algorithm

been presented in Rdfl4]. On the other hand, it would be
interesting to see whether there is an algorithm to drive the

and Neuberger’s double-pass algorithm is the diagonalizatiodynamics of thes&lg pseudofermion fields such that the cost

of the tridiagonal matrix7 and the computation of the coef-

is almost independent &= 2n.
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